PSI to turbulence during internal wave beam refraction through the upper ocean pycnocline
نویسنده
چکیده
A numerical study based on large eddy simulation (LES) is performed to investigate the nonlinear interaction of a semidiurnal (M2) internal wave beam with an upper ocean pycnocline. During refraction through the pycnocline, the wave beam undergoes parametric subharmonic instability (PSI) with formation of waves with (1/2)M2 frequency. The three-dimensional LES enables new results that quantify the route to turbulence through PSI. The subharmonic waves generated from PSI have an order of magnitude smaller vertical scale and are susceptible to wave breaking. Convective instability initiates transition to turbulence, while shear production maintains it. Turbulence at points in the subharmonic wave paths is modulated at (1/2)M2 frequency. The beam suffers substantial degradation owing to PSI, reflected harmonics and ducted waves so that only about 30% of the incoming energy is transported by the main reflected beam.
منابع مشابه
Degradation of an internal wave beam by parametric subharmonic instability in an upper ocean pycnocline
[1] Numerical simulations are performed to investigate the interaction of a semidiurnal internal wave (IW) beam with the nonuniform stratification of an upper ocean pycnocline. During the initial stage of the interaction, higher harmonics originate after reflection of the IW beam at the caustic and are trapped in the pycnocline. In cases where the pycnocline thickness is sufficiently large (app...
متن کاملThe wave instability pathway to turbulence
One way that large-scale oceanic internal waves transfer their energy to small-scale mixing is through parametric subharmonic instability (PSI). But there is a disconnect between theory, which assumes the waves are periodic in space and time, and reality, in which waves are transient and localized. The innovative laboratory experiments and analysis techniques of Bourget et al. (J. Fluid Mech., ...
متن کاملLimnol. Oceanogr., 44(3), 1999, 512–529
Temperature-gradient microstructure and nutrient profiling were undertaken at both an inshore and an offshore site on Mono Lake, California, to determine whether boundary mixing occurred and the effects on nutrient flux within the lake. Turbulence, as quantified by rates of dissipation of turbulent kinetic energy, was two to three orders of magnitude higher at the inshore site where the pycnocl...
متن کاملBoundary mixing by density overturns in an internal tidal beam
[1] A numerical study based on large eddy simulation (LES) is performed to investigate near‐bottom mixing processes in an internal wave beam over a critical slope. Transition to turbulence from an initial laminar state is followed by mixing events that occur at specific phases. Maximum turbulent kinetic energy and dissipation rate are found just after the zero velocity point when flow reverses ...
متن کاملImproving Simulations of the Upper Ocean by Inclusion of Surface Waves in the Mellor-Yamada Turbulence Scheme
[1] The Mellor‐Yamada turbulence closure scheme, used in many ocean circulation models, is often blamed for overly high simulated surface temperature and overly low simulated subsurface temperature in summer due to insufficient vertical mixing. Surface waves can enhance turbulence kinetic energy and mixing of the upper ocean via wave breaking and nonbreaking‐wave‐turbulence interaction. The inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015